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Abstract

Inspired by the rapid elongation of air columns injected into vortices by dolphins, we

present an exact inviscid solution for the axial speed (assumed steady) of propagation

of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The

bubble is assumed to be held at constant pressure by being connected to a reservoir, the

lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation

rate above which steadily propagating bubbles exist. For a bubble at ambient pressure,

the propagation speed of the bubble (relative to axial velocity within the vortex) varies

between 0.5 and 0.5 of the maximum rotational speed of the vortex. Surprisingly, the

bubble tip can propagate (almost as rapidly) even when the pressure minimum in the

vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple

on the nose of the bubble. A situation important for incipient vortex cavitation, and

one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose

internal pressure may vary. Under the assumption that the acceleration term is small

(checked a posteriori), the steady solution is applied at each instant during the elonga-

tion. Three types of behavior are then possible depending on physical parameters and

initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and

nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation

with decreasing bubble pressure. A limit point of the steady solution is encountered

at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure

and indefinite crea_;ion of volume. This is made possible by the existence of propagat-

ing solutions at bubble pressures below the minimum vortex pressure. As the bubble

stretches, its radius initially decreases but then becomes constant; this is also observed

in experiments on incipient vortex cavitation.



1 Introduction

Marten et al. [1] report captive dolphins making bubbles interact with vortices in a number

of ways. This behavior is performed, apparently for play, without any training or food

reward, and at the dolphins' own volition.

In one case, the dolphins make ring vortices with a flick of their tail fins and then

turn around to inject air into them from their blowholes. The air forms a tubular bubble

that lengthens rapidly along the vortex core, eventually forming a toroidal bubble; see

photographs at the top of pp. 86-87 in Marten et al. [1]. Dolphins also inject air into the

longitudinal vortices created behind their dorsal fin. This too forms a cylindrical air column

that rapidly propagates along the vortex; see figure 1. This situation differs from the case

of the vortex ring in that axial flow is present in the vortex. In both of these examples, the

bubble remains connected to the dolphin's blowhole or mouth while undergoing substantial

increase in length. Heace we shall initially assume that the bubble pressure equals the

reservoir pressure, which in turn is taken to be constant in time.

The mechanism for propagation of the bubble is simply that the lower than ambient

pressure in the vortex core sucks the air, provided the surface tension is not too high. To

see this mathematically, consider figure 2 which shows one end of the bubble propagating

into the vortex. The bubble is assumed to be sufficiently long that there exists a region

(station 2 in figure 2) where axial derivatives may be neglected; this is made more precise in

§4. In order to the make the flow steady between stations 1 and 2, choose a reference frame

that moves with the speed Ub of the bubble nose. Constancy of Bernoulli head along the

axis streamline implies that the pressure at the tip of the nose is Pn = Pa + p(U - Ub)2/2,

where Pa is the pressure at the axis of the undisturbed vortex, p is the liquid density, and

U is the axial velocity of the liquid at the vortex axis in the laboratory frame. Combining

this with the pressure matching condition Pb --Pn = _T gives the bubble speed:

Ub = U + _/2(Pb -- Pa -- T_), (1)

where T is the surfac_ tension and t_ is the total curvature at the tip. The :t= symbol

means that the tip may either advance through the vortex or retract. We shall choose the

physically observed advancing solution; in reality it is presumably the initial condition that

sets up the elongation. The speed would be determined by (1) if only _ were known. In

the present work, one is fortunate to be able to evaluate the speed without knowing x, and

in fact, to able to deduce _ a posteriori using (1). What makes this evaluation possible is a

useful method of analysis introduced by Batchelor [2] in which one matches two cylindrical



(axially invariant) solutionsof the steadyEulerequationsat stations1and 2.
The caseof a free bubblenot connectedto a reservoirand thereforehavingvariable

internalpressureis alsoimportantin threecontexts:

(i) First, the dolphinstopsblowingat somepoint.
(ii) Dolphinshavealsobeenobservedto releasefreesphericalbubblesand then to "whip
theminto shape"usingvortices.For instance,onedolphinreleaseda cloudof bubblesfrom

its blowholewhile swimmingrapidly; the bubbleselongatedinto a long tube whenthey

encounteredthe longitudinalvortexbehind the dorsalfin; seephotographsat the bottom

of pp 86-87in Marten c.t al. [1]. One observes a tremendous creation of volume from a few

small bubbles. This may seem contrary to intuition for if the volume increases, the bubble

pressure must at some instant fall below the vortex pressure, thus eliminating the driving

mechanism for the elongation according to (1). The present solutions indicate that what

permits elongation in this situation is n being <: 0. Another dolphin stood upside down in

the water and released a bubble from its mouth which rose towards the surface; when the

bubble reached the tail fin, it was elongated into a ring vortex by a flick of the tail fin.

(iii) A similar phenomenon was observed in experiments on incipient vortex cavitation

behind a wing tip con,iucted by Maines and Arndt [3]. They observed four stages: (I)

Motion of a small spherical bubble towards the vortex axis driven by the radial pressure

gradient in the vortex. This is also the reason why the bubble is initially helical in figure 1.

(II): Volume expansion of the bubble in the shape of an ellipsoid whose major and minor

axis both grow, with the major axis growing much more rapidly. (III) Explosive growth

of the major axis accompanied by a decrease in minor axis. (IV) In the final phase, the

bubble grows as a cyliadrical bubble in which the length continues to increase while the

radius becomes constaILt.

We shall provide a treatment in which the steady solution is applied to such situations

under the assumption _f quasi-steadiness.

2 Analysis

2.1 Bubble with specified pressure

We employ cylindrical coordinates (x, _, ¢) with corresponding velocity components (u, v, w).

The streamfunction ¢(z, a) defined by

1 0¢ 1 0_b
- v : (2)

a Oa' a Oz'



Figure h Dolphin iniecting air into a vortex it previously created using its dorsal fin.
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Figure 2: Sketch used for the analysis.



describesthe flow in a meridional(xa) plane. The swirlingflow in the undisturbedvortex
at station 1is takento bea Rankinevortex

f}a, a < 61; (3)wl= _6_/a, a>61,

where _1 is the vortex core size. The axial velocity in the undisturbed vortex is assumed to

have a uniform axial velocity, U, such that in the reference frame moving with the bubble

tip we have

u-gb, a<,h; (4)tll ---_ --Ub, Or _> 61.

These choices for the vortex flow were made for analytical tractability. More general profiles

may be treated by the procedure below but it has to be implemented entirely using numerical

analysis.

Steady axisymmetric inviscid flow is governed by the Squire-Long equation [2],

02_ 02¢ 1 0¢ = a2H,(¢)/p _ K(¢)K'(¢) (5)
O_7 + Oor2 orOor

where K(¢) = aw is the. circulation function and H(¢) = p + plu[2/2 is the Bernoulli head.

We shall follow a very useful but simple method of analysis introduced by Batchelor [2] in

which one joins two axially invariant solutions of (5) at two

The first step is to obtain the functions K(¢) and H(¢)

this location, the streamfunction obtained using (2) and (4)

stations.

from the flow at station 1. At

is:

(U - Ub)a2/2, a < 61;¢1(_) = (u,_ - Gor2)/2, or > _1.
(6)

For later use, let us define the streamfunction for the vortex boundary:

¢0 - ¢1(61) = (U - Ub) 6_/2. (7)

After solving (6) for a 2 in terms of ¢, the circulation function is obtained:

{ 2¢W(u - Vu), or < _1;K(¢) = aw = f16_, or > ,_1.
(8)

The pressure at statiorJ 1, obtained after integrating

OP__A= _
O Or Or '

(9)



is

+ pa2 (°2/2 - 61 ), o < 51;
Pl -_- (10)

p_ -pl'_2514/(2a2), o > 61.

Evaluating H(¢) = pl + p[ul [2/2 and writing a in terms of ¢ gives

H(¢) = _ Pc¢+ P12:: (2¢/(U - Ub) - d_) + p(U - Ub) 2/2, within the vortex; (11)

( p_ + pUi_/2 , outside the vortex.

Inserting (8) and (11) iato (5) gives for an axially invariant flow:

02¢ 1 0¢ = 29t 2 _ a2 _ 2¢/(U - Ub), inside the vortex; (12)

00 .2 0. 00 (U -- Ub) [ 0, outside.

We obtain ¢ at statioI_ 2 by solving (12). In the interior region, (12) has the same form

as an equation obtained by Batchelor/2](p. 546) and we simply use his solution. In the

exterior, we assume a solution of the form ¢ c( am. The result is:

/ - (Ub - U) 0.2/2 + o [AJl(k0.) + BYI(ko)], o < (f2;¢2(O) (13)/ --Ub°2/2 + C, ° > 52,

where

The constant C = (1/2)Ud_

corresponding to (13) is

:_-{

212
k=

(U - Ub)"

by imposing the condition that _P2(62) = _o.

- (Ub - U) + AkJo(k°) + BkYo(ka), a < 52;

--Ub, ° > 62.

(14)

The velocity

(15)

The five unknowns Ub - U, 6b, 52, A, B are obtained by imposing five conditions:

(1) The bubble surface, must be a streamtube, i.e., ¢2(6b) = 0:

1 (Ub -- U) "4-AJl(kSb) + BYl(k6b) = 0. (16)
2

(2) The vortex boundary must be the same streamsurface at stations 1 and 2, i.e., ¢2(52) =

¢0:

l(ub -U) 62= 1--2 --_ (Ub -- U) 622+ 52 [AJl(k52) + BY1(k62)]. (17)

(3) The pressure must be continuous at ° = 62, i.e., P2(° = 6_) = p2(a = 6+). The pressure,

p2(a = 5+), just outside the vortex is obtained by equating the value of the Bernoulli head

in the exterior region to its definition:

1 2 1
+ _pUO = p2(° = 62+ ) + _p [u22(6+) + w22(5+)]. (18)pc,,
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The pressure,p2(5_), just inside the vortex is obtained by evaluating H(¢) of the inner

region at ¢ = ¢0 and equating it to its definition:

1

Subtracting (19) from (18) and using the fact that both pressure and azimuthal velocity

must be continuous giw;s

u2(5_) = -b (Vb - U) (20)

To choose the correct sign in (20), one argues that in the case when the axial velocity in

the vortex U -= 0, a vortex sheet does not exist and therefore the axial velocity must be

continuous, i.e. u(6f) =: -Ub. Hence, we choose the minus sign in (20) and obtain:

AJo(k52) + BYo(k52) = O. (21)

(4) Forces must balance on the bubble surface at station 2:

Pb -- P2(_b) = T/_b. (22)

The pressure P2(_b) is obtained by equating the value of H(¢) at the bubble surface (¢ = 0)

to its definition:

(23)

Solving (23) for p2(bb), substituting this into (22), and noting that the azimuthal velocity

W(bb) on the bubble surface vanishes because K(_b = 0) = 0 gives:

Pb - P_ - _P (Ub - U) 2 + pa252 + pu2(Sb) 5b -- O, (24)

where

U(bb) -------(Ub -- U) + AkJo(kbb) + BkYo(kbb). (25)

At this point, let us introduce non-dimensional quantities (denoted by hats) using the

density p, vortex core l adius 51, and angular velocity _2 as the scaling quantities:

A B 55

- = = 5-7'

Ai_b = Pb -- Poc _, _ T (26)

5A AOb- Ub-V
51' _51 '

An expression in dimeiLsional form may be converted to non-dimensional form by setting p,

51, and _ to unity and placing hats over all quantities.



(5)Thefifth conditionis that axialmomentummustbalancein the regionbetweenstations
1and 2:

Noticethat f puv adx, the radial flux of axial momentum at the outer radial boundary

a --+ oc, does not appe_r in (27). This is because the radial velocity v _ a -2 given that

there are no sources of volume. When pressure and velocity profiles are substituted into

(27), several integrals involving Bessel functions appear. These integrals are provided in

Gradshteyn & Ryzhik [4] 5.54.2, 5.56.2, and Watson [5] p.134, eq. (10). The integrals were

supplied to Mathematica which performed the rest of the algebra. The final result is:

where

T1 + T2 + T3 = O, (28)

1 --

T2 =

T3 =

^^ 1_ 2 1 (_2)- -g+ 2
1

[z + + -

with

in which

/i = Y0_(_b)+ J0(vb)J2(_)

A = J02(v2)+ g0(v2)J2(v_)

A ----- J2(_/b)Y0(r/b) -{-2J007b)Y0(Vb) + J007b)Y2(rlb)

f4 ----- 2Jo(o2)Yo(02) + J_(v2)Yo(w) + Jo(w)Y2(02)

:5 = ro2(_b)+ Yo(_b)Y2('_b)

:6 = Yo2('12)+ Yo('72)Y2('_2)

f8 = 3:Yl(r/2) - 3brl(_/b)

A_rb. (29)

It is not difficult to show that energy conservation is automatically satisfied by the

requirement that H(y,) is the same function of ¢ at both stations. Similarly, angular

momentum is conserved because K(¢) is the same function everywhere.



The fiveequations(16), (17), (21), (24),and (28)weresolvedusingroutineNEQNJin
theIMSL librarywhichusesavariantof Newton'smethod.Elementsof theJacobianmatrix

wereanalyticallycalcul;_tedwith thehelpof Mathematica.Weinitially foundit impossible

to find a starting guessfor the five unknownsthat wouldconvergeto any solution. To
overcomethis difficulty, we pretendedthat the problemwasthat of a solid cylinder of

specified radius being pushed through a vortex at a specified speed. Only the first three of

the five conditions are then needed and the method readily converged to a solution when

starting with an initial guess analytically obtained for the small swirl limit. This converged

solution was then substituted into the remaining two conditions (which happen to be linear

in T and A_b) to obtain the surface tension T and bubble pressure A_b that would make the

solution valid for a bubble. Starting with this solution Eve, all the other solutions presented

in this paper were obtai ned by gradually varying parameters and using the previous solution

as a starting guess.

Since U always occurs in the combination Ub -- U, the effect of a uniform axial flow on

bubble speed is merely additive. The five equations remain unchanged when A,/3 and ALr b

all change sign. Thus, for every solution that represents a bubble advancing into the vortex,

there exists is a solution that represents a bubble withdrawing from the vortex. This is a

consequence of time-reversal symmetry of inviscid motion and in practice initial conditions

determine the relevant solution.

2.2 Free bubble

Consider a cylindrical bubble at time t with finite length L(t) and internal pressure pb(t).

If the gas within the bubble remains adiabatic, then

pb(t)VT(t) = Pb0V0_, (30)

where the subscript '0' denotes initial values. The bubble volume V(t) _ _rS_(t)L(t) if

the bubble is long enough that the contribution from its ends is negligible. Writing Pb =

P_ + Apb and Pb0 = P,_ + APbo, (30) gives

(Poo + Apb0 1/7 VO
L = \ _ _--_Pb ) _rg_" (31)

If the acceleration Ou/Ot is small compared to the pressure gradient, say, then one may

make the quasi-steady assumption that at each instant, the bubble radius and speed of

extension of each end can be obtained from the steady solution at the bubble pressure



impliedby (31). Weestimate:

0u c ( vb) -2AVb -
__ ~ " = O(AUb_____))OL o( gb) O(AU )
Ot Ot OL Ot OL

(32)

and

V P ,',, P_t252
(fl

In non-dimensional terms therefore, the requirement for quasi-steadiness is:

(33)

<< 1. (34)

Let us consider two (:ases for the '0' state: (i) a spherical bubble of radius Rb in quiescent

liquid that is then subj(_cted to the vortex flow field, and (ii) a cylindrical bubble just after

the injection device closes. In the first case, Apb0 = 2T/Rb and V0 = (4/3)_R 3. In

the second case Apb 0 is the reservoir pressure, and V0 = _(_)0L0 where 55o is obtained

from the steady solution for the given Apb 0. Substituting these into (31) we can calculate

L corresponding to an)" solution point of the steady problem. Note that we cannot say

anything about the path from the '0' state to the cylindrical one: for instance, a dynamical

barrier may exist that prevents the latter from being realized.

3 Results

3.1 Bubble with specified pressure

Figure 3 displays various results as the relative bubble pressure is varied for different values

of the surface tension. Focus first on the propagation speed (graph a) and notice that two

of the curves (........ and ----- ) have a break near Afib = 0. This is where the solution

algorithm stopped converging either because the solution does not exist or changes too

rapidly to track.

Each curve also has a limiting value of Afib below which the algorithm also stops con-

verging. We believe these to be genuine limit points beyond which steady solutions do not

exist. The presence of a limit point is partially plausible from (1) which shows that the

radicand becomes negative if Ai_ b is sufficiently large. However,(1) implies that AUb = 0

at the limit point provided g continues to exist. The fact that the actual limit point occurs

for higher AUb means l hat other constraints prevent a solution from existing.

Figure 3b plots the _,ortex radius at station 2 and shows that the vortex pinches instead

of being displaced outward by the bubble.

10
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Figure 3c plots the bubble radius. One may obtain an approximate formulas by sup-

posing that the flow at station 2 is negligibly disturbed relative to the vortex at station 1.

The equilibrium radius of a cylindrical bubble in such a flow is given by the condition:

Pb -- pl(Sb) = T/_b, (35)

which, upon using (10), becomes in terms of non-dimensional variables:

- + 1= (36)

An even simpler approximation is obtained by neglecting the term quadratic in _b:

- (37)
A_b+ 1"

Figure 4 (dotted) shows that (37) is slightly better than (36) and that both approximations

overpredict the exact re._mlt implying that the liquid pressure at the bubble radius is smaller

than at the same radius in the undisturbed vortex.

Figure 3d plots the curvature of the bubble tip as deduced from (1) and the fact that

Pa = po_ - p_5_. Actually, a curvature index a, defined as

a-- = 1 -- _b, (38)

is plotted in order to emphasize small difference from aSb = 1 on a log scale. A hemispherical

nose has _ = 2/65 (o_ = -1), a flat tip has n = 0 (a = 1), while a nose with negative

curvature has _ < 0 (a > 1). Figure 3d shows that not only is the tip is flatter than

hemispherical, i.e., a :> -1 but a > 0. That this should be so is proven as follows.

Constancy of the Bernoulli head from the tip to a point on the bubble surface at station 2

gives:
"1 -I

Pn = P2(Sb) + _pu_(52) = Pb -- T/Sb + _-PU22(52), (39)
Z - Z

where the fact that the azimuthal velocity is zero on the bubble surface has been used. On

the other hand

Pn ---- Pb --/_T. (40)

Equating (39) and (40) gives _t_b < 1.

A word of caution: the fact that a _ 0 for large Ai_ b in figure 3d should not lead one to

say that the curvature is approximately known and therefore (1) may be used to approximate

the speed. Substituting into (1) the fact that the bubble radius _b _ T/(A_b + 1) for large

Ai_b gives:

A0b + 1). (41)

12
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Figure 5: Propagation speed of a bubble at ambient pressure (A_b -----0) as a function of

surface tension.

Thus for large A_b, th_ speed involves the product of a, no matter how small, and a large

A; b
Note from figure 3a that when T is small enough, the bubble is able to propagate even

when A_b < --1, i.e., ,_hen bubble pressure is less than minimum vortex pressure. In this

case the tip curvature i_ negative, i.e., the nose is dimpled (figure 3d).

The case of A_b = 0 is relevant for an unpressurized reservoir and figure 5 plots the

speed as the surface teILsion is varied. Solutions exist for T <_ .380 which for air and water

and a 3 cm core radius corresponds to a modest f2/(2n) > 0.9 rev/s.

3.2 Free bubble

Here we consider the quasi-steady behavior of a free cylindrical bubble whose pressure and

dimensions are compatible with it having initially been a spherical bubble of radius R0 in

a quiescent liquid. The parameter space now includes/_0 -- Ro/51 and _ - p_/(p_t2,_ 2)

in addition to T and Ai_b. Instead of mapping out the space, we shall be content to sketch

three scenarios which we shall denote as A, B1, and B2.

Consider (31) (placing hats on all quantities) as A_b varies. If we begin in the regime

Apb << p_, then the first factor in (31) is practically constant as A_b varies. Since, the

bubble speed is positiw_, L must increase and therefore _b must decrease. Two cases are

then possible: the cylii_drical bubble may be at a point in figure 3c where the _b versus

A_b curve either has a (A) negative or (B) positive slope.

In the former case, the solution point must move to the right along the curve to allow

_b to decrease. Thus A_b increases and the elongation continues unabated. The bubble

13



volumedecreaseswith elongation,however,aslongasA_b << _, the decrease is negligible

and the bubble will be nearly incompressible. At some point during the elongation, A_b will

become comparable to _. This means that the first factor in (31) will decrease and so 6b

must decrease faster to allow L to increase. At this stage, the bubble volume will begin to

wither away. In fact, when Apb >> Pcx_we may use (37) to conclude that the bubble radius

will diminish as Sb '_ _-f-27/(27-1) "_ j_-1.56, which is faster than the _b "" /-z/2 behavior of

an incompressible bubble.

For case B1, the _b versus A/3b curve has a positive slope. Hence the solution point

must move to the left along the curve: A_b becomes more negative and eventually a limit

point is encountered which presumably stops the elongation.

Case B2 is similar to B1 except that the location of the limit point APb,lim < --Poz

allows unceasing elongation. As A/_b becomes more negative during the elongation, it will

become comparable to -_ at some point. The first factor in (31) then increases and it is

no longer necessary for t;he bubble radius to shrink to allow L to increase. At this point, the

bubble radius becomes constant and volume begins to be created indefinitely with bubble

pressure becoming arbit, rarily close to vacuum.

We now illustrate e_tch of the three cases by means of specific examples.

To demonstrate type A behavior, let us initially have a spherical air bubble of 2 mm

radius surrounded by water at atmospheric pressure, that is subjected to a vortex with a 2

cm core rotating at 2 rev/s. These values imply T = .058, _ = 1604, and _ = 0.1. The

first step is to generate, a solution locus for T = .058 by varying Ai6b as in figure 3. We

find that the locus has two branches similar to the dotted curves in figure 3. The present

analysis cannot say which branch the bubble will end up on. The left branch exhibits type

B1 elongation terminating quickly at L = 0.39. The neglect of axial derivatives is unlikely

to hold for such a small/5 (see §4); still behavior with similar characteristics may exist in

reality. The right branch exhibits unassailable type A behavior as shown in figure 6: the

pressure increases with length and the elongation continues unabated. Figure 6b shows

that the bubble radius diminishes very nearly as L -1/2, i.e., the bubble remains very nearly

incompressible. As uote,d above, we should expect a stage to be reached (when A_b > 1604)

where volume diminishes and its existence was verified. The measure of merit, eqs, of the

quasi-steady assumptioa, decreases from 0.2 to 0.004 in the range of figure 6.

To depict type B el, rogation, let us choose T = 0.001 (see chain-dot curves in figure 3).

This is achieved by increasing fl/(2n) to 15.18 rev/s, leaving all other dimensional param-

eters the same as in th,.' previous example. We then have _6oo= 27.83. Again, the solution

locus has two branches The right-hand branch (type A) is found to start at L _ 500 and

14
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Figure 6: Evolution of bubble pressure and radius with elongation (example illustrating

case A).

one cannot rule out an unsteady process that somehow produces such a cylindrical bubble.

Let us focus on the left-hand branch (type B). Figure 7a shows that the bubble pressure

decreases as the bubble elongates, and a limit point is suddenly encountered. The curves

were truncated at the ]eft in order that the acceleration parameter 2 x 10 -5 < eqs _< 0.1

in the range of the plot. Again, quasi-steadiness becomes a better approximation as the

bubble extends.

Finally, to obtain type C behavior, let us choose _/(2_') = 10 rev/s, _1 = 7 cm and

R0 -- 3 mm. We then have T = 5.4 x 10 -5, i_c¢ --- 5.24, and/_0 ---- .043. The right branch

(type A) begins at an absurd L _ 14,000 and so we focus on the left branch which begins

at a reasonable state. The limit point of the left branch lies at APb,lim _,_--5.42 < --i_ thus

allowing unabated elongation together with creation of volume. Figure 8a shows that the

bubble radius initially decreases and then becomes constant as seen in stages III and IV of

the experiments [3]. The bubble pressure, shown in figure 8a , becomes nearly constant as

the bubble elongates. _Ihis means that the bubble speed becomes nearly constant and the

acceleration parameter becomes ever smaller; it decreases from 0.1 to 10 -7 in the range of

the plot.

4 Closing remarks

Using a method introduced by Batchelor [2], the speed of propagation of a semi-infinite

cylindrical bubble into a vortex has been calculated without knowning the shape of the

nose and found to be comparable to the maximum rotational speed in the vortex.

If the pressure in the reservoir is indeed constant in time, then the main assumption
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in the presenttreatment is that of a semi-infinitebubble. This allowsneglectof axial

derivativesat station2. Howvalid is this for a finite bubbleof lengthL?. Since the axial

velocity must vanish at the axial center of the bubble, axial derivatives of velocity _ Ub/L.

On the other hand, radial derivatives of velocity _ _ hence axial derivatives axe small

provided Ub/L << 1. Since the numerical results showed that Ub = O (1), the requirement

is that/_ >> 1.

Using the assumption of quasi-steadiness, we applied the constant pressure solution to

bubbles with variable pressure. The validity of the assumption can be checked a posteriori

for each case by calcu]ating the characteristic acceleration (34). Depending on physical

parameters and initial conditions, three distinct cases are possible. They are summarized

in the abstract.

Let us list the most salient of the many questions that remain unanswered:

(1) What happens whe.n one tries to inject a fixed pressure bubble at a point (Apb,_)

in the parameter space, beyond a limit point? In a similar vein, what happens when a

quasi-steady variable pressure bubble arrives at a limit point in scenario B1.

(2) What is the status ,)f the gaps in figure 3?

(3) The present work a_sumes that one already has a cylindrical bubble. What conditions

make possible the evolution from a spherical to a cylindrical bubble? What determines

whether the solution will end up on a type A or type B1/B2 trajectory.

(4) A uniform axial velocity in the vortex cores merely adds to the velocity of bubble

propagation. It would be useful to implement the present procedure (numerically) for more

general profiles perhap_ in conjunction with an experiment that injects air into a vortex

ring or into the vortex of an airfoil in a water tunnel or towing tank.

(5) The stability of a cylindrical bubble surrounding by a purely circumferential flow has

been studied by Pedley [6], for instance. The result is that the surrounding flow stabilizes

the bubble. In the pres_.nt situation the flow at station 2 also includes an axial flow. What

are the stability proper1 ies of the station 2 flows?
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